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This paper presents a study of the convection in acetone due jointly to the 
thermocapillary (Marangoni) and thermogravitational effects. The liquid (acetone) is 
submitted to a horizontal temperature difference. Experiments and numerical 
simulations both show the existence of three different states : monocellular steady 
states, multicellular steady states and spatio-temporal structures. The results are 
discussed and compared with the linear stability analysis of Smith & Davis (1983). 

1. Introduction 
When a layer of fluid is submitted to a horizontal temperature difference, as 

sketched on figure 1, convection results from density differences and surface tension 
forces, due to the variation of the surface tension u with the temperature T .  The 
thermocapillary effect, usually referred to as Marangoni convection, is directly 
related to the surface tension gradient 

We have already presented some results (Villers & Platten 1985, 1987) when surface 
tension increases with temperature, a very complex case since the surface and 
gravitational forces produce two superposed convective cells. 

In  this paper, we focus our attention on the classical case of negative au/aT. Then, 
the two forces act in the same direction. The parameters which allow to describe 
convection are : 

the Prandtl number P r  = v /K,  (2) 

the Rayleigh number 
gaATh3 

Ra = -, 
KV 

(au/aT) ATh 
the Marangoni number Mu = - 9 

Po KV 

(3) 

(4) 

the aspect ratio A = L/h, ( 5 )  

where g is the gravitational acceleration, a the thermal expansion coefficient, AT the 
temperature difference imposed between the lateral walls, h the thickness of the 
layer, K the thermal diffusivity, po the density of the fluid a t  the mean temperature, 
v the kinematic viscosity, and L the length of the cavity. One can find in the 
literature other definitions of Ra and Ma, namely Ra* = gaATh4/KvL and 
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- L  + 
FIGURE 1. Two-dimensional description of the model cavity used for the numerical and 

experimental work. 

Ma* = - (acr/aT) ATh2/p,  KVL ; the ratio of the two definitions is simply A .  The second 
set of definitions (containing the aspect ratio L / h )  is usually adopted by researchers 
more implied in numerical analysis. However, we have found in our experimental 
study that the points corresponding to steady states or to oscillatory states are more 
separated in phase space using Ma and Ra than when using Ma* and Ra*. Clearly, 
gravitational forces dominate for large h (the Rayleigh number is proportional to  h3) 
whereas the thermocapillary effect is dominant for small h (the Marangoni number 
is proportional to h) .  I n  the literature, the ratio Ra/Ma is sometimes referred to  as 
the dynamic Bond number. 

The parallel-flow solution valid for an infinite layer yields a simple cubic 
polynomial expression for the horizontal velocity profile V,(z) taking into account 
both the thermocapillary and the thermogravitational processes (Birikh 1966 ; 
Kirdyashkin 1984; Villers & Platten 1987). Obviously a simpler parabolic profile is 
obtained when thermocapillarity acts alone (Smith & Davis 1983). These expressions 
are very useful when one is interested in the basic convective states for low values 
of the control parameter, namely the temperature difference. 

The scope of this paper is a first insight in the flow pattern when the basic state 
becomes unstable, in a layer of finite extension. First we present numerical 
simulations in order to  describe the expected flow pattern and next show some 
experiments confirming the transitions between monocellular steady flow, multi- 
cellular flow and, for higher values of the control parameter, spatio-temporal 
behaviour. These will be compared and discussed in the last two sections in the light 
of numerical simulations and the existing stability analysis of Smith & Davis (1983). 

2. Steady convection : numerical simulations 
The goal of these simulations is to show the basic velocity field in a cavity of finite 

extension, and to describe the first ' instability ' of this profile. Numerically, we 
consider the problem of transient natural convection in a rectangular enclosure using 
the stream function-vorticity formulation of the two-dimensional NavierStokes 
and energy equations, assuming the Boussinesq approximation. The numerical finite 
differences method we use is the classical second-order alternating-direction implicit 
method (Peaceman & Rachford 1955) on a rectangular grid (129 x 33 or 257 x 65) (see 
also Villers & Platten 1990). This method was implemented in Fortran on a standard 
microcomputer. The two lateral isothermal walls and the bottom (supposed to be 
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conducting) are rigid. The thermocapillary effect (for a flat interface) introduces the 
Levich boundary condition (Levich 1962) 

from which follows in dimensionless form the Marangoni number given by (4). Since 
the main goal of these numerical experiments is to show different convective regimes 
rather than to simulate accurately the laboratory experiments, we shall not take into 
account heat and mass transfer in the gas phase, themselves influenced by the 
experimental devices used to avoid evaporation, etc. Therefore, as we have done 
previously, we use an adiabatic condition as the boundary condition for the 
temperature on the top. 

The simulations presented in this section are performed with a Prandtl number 
Pr = 4. This small value is chosen because it corresponds in order of magnitude to 
many low-viscosity and transparent organic liquids which can be used in experiments 
and because the computation time is an increasing function of Pr. Figure 2 shows the 
streamlines and isotherms obtained in a rectangular cavity of aspect ratio A = 4, 
with Ma = 1000 and Ra = 0 (case a )  and with Ma = 2000 and Ra = 0 (case b).  We 
clearly observe a single convective cell, with the streamlines approximately 
horizontal in the central part of the cavity. In  these conditions, we expect that the 
flow in this region corresponds to the parabolic solution occurring when thermo- 
capillarity is the only cause of motion in an infinite cavity : 

V,(z) = z(z-8)  with 0 < z < 1. (7) 

This is evident from figure 2 (c )  which shows the simulated profile V,(z) on the vertical 
median (Ma = 2000, Ra = 0) together with the parabola of equation (7). 

Fig. 3 (case a : A = 4, Ma = 3000, Ra = 0 and case b : A = 4, Ma = 4000 and Ra = 
0) shows situations with higher values of the control parameter. In  both cases, we 
observe the existence of a perturbation (of finite amplitude) superposed on the 
original monocellular regime, which corresponds to two stationary convective cells 
with the same direction of rotation. We can also see from the shape of the isotherms 
that locally there exist negative horizontal temperature gradients aT/ax, instead o f  
the global positive mean temperature gradient ATIL, together with local vertical 
stratifications aT/az < 0 (unstable when gravity acts). With fluids of Prandtl number 
much greater than one, temperature fluctuations constitute a ‘dangerous ’ source of 
instability. 

The instability of the monocellular state remains when gravity acts together with 
thermocapillarity. For example, we observe the monocellular state when A = 4, 
Ma = 1000, Ra = 1000, but also a bicellular steady state when A = 4, Ma = 4000, 
Ra = 4000 or A = 4, Ma = 6000, Ra = 6000. Figure 4 shows the stationary state 
obtained withMa = Ra = 6000. Streamlines and isotherms look very much like those 
obtained with Ra = 0, Ma = 4000 in figure 3(b). The V, ( z )  profile on the vertical 
median is clearly different from a parabola, because of the action of gravity. 

The number (and to a lesser extent the size) of the convective cells quite naturally 
changes with the aspect ratio. Suppose that the lateral extension of one cell is more 
or less constant, as an extrapolation to finite systems of the results of a normal mode 
analysis with the appearance of a unique wavelength (Smith & Davis 1983; Laure & 
Roux 1989). Therefore, in a finite layer, we expect the number of convective cells to 
depend on the available space, namely A .  To confirm this hypothesis, we have 
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FIQURE 2. (u, b )  Streamlines and isotherms of two numerical simulations with Pr = 4, Ru = 0, 
A = 4: (a) Mu = 1000; (b )  Mu = 2000; (c) V&) profile on the vertical median compared with the 
parabolic profile of equation (7) (Ma = 2000). 



Coupled buoyancy and Marangoni convection 49 1 

FIGURE 3. Streamlines and isotherms of two numerical simulations with Pr = 4, Ra = 0, A = 4:  
(a) Ma = 3000; ( b )  M u  = 4000. 

FIQURE 4. Streamlines and isotherms of a numerical simulation with Pr = 4, Ru = 6000, 
Ma = 6000 and A = 4. 

performed simulations at R a  = 0 and Mu = 8000, varying A with the succession 
values, 2, 3, 4, 6 (see figure 5u-d). A variation of the number of cells is, in fact, 
observed. When A = 2, it seems impossible to have more than one cell, whereas a 
second cell is possible for A = 3 and A = 4. In a still larger cavity (A = 6), we see the 
appearance of a third cell. Thus, from these few simulations, we propose that the 
length of a cell is approximately two times its thickness. This crude approximation 
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FIQURE 5 .  Influence of the aspect ratio on the convective motions with Pr = 4, Ra = 0, 
Ma = 8000 and (a) A = 2, ( b )  A = 3, (c) A = 4, ( d )  A = 6. 

is not too far from the critical wavelength resulting from the theory of Smith & Davis 
(1983) which predicts a value close to 2.5. 

Other simulations will be shown in the next section, devoted to comparisons with 
experiments. 

3. Steady convection : experiments 
3.1. Experimental conditions 

The experimental technique used to record velocity profiles, e.g. VJz) ,  is laser 
Doppler velocimetry (LDV). As explained elsewhere (Platten, Villers & Lhost 1988), 
our LDV equipment is specially dedicated to the measurements of small velocities in 
liquids, rangiong from 5 pm/s to a few mm/s. We choose acetone as test fluid for 
several reasons. 

(i) It is a transparent liquid, which thus allows the use of LDV. (ii) It has a low 
value of the surface tension and so, combined with its good properties as solvant, we 
can avoid problems of surface contamination by surface-active substances more 
easily than in water or in aqueous solutions. (iii) For acetone, Pr w 4.24 at a mean 
temperature of 20 "C. This small value allows faster numerical simulations than for 
other organic liquids (alcohols, etc.) having a greater Pr. (iv) We estimate the 
coefficients as - (acr/aT) A T / p ,  KV w 38 x lo3 cm-' and gaAT/Kv w 344 x lo3 cm-3 for 
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mm 
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FIGURE 6. Sketch of the experimental cell. 

AT = 1 K and at T = 20 "C. Thus, the flow is primary due to thermocapillarity for 
thickness of the order of 1 mm and length of the order of 1 cm. It is, however, possible 
to obtain R a  and M a  of the order of 103-105, the range which corresponds to 
transition in the flow structure, and for which it is still possible to perform numerical 
simulations without computational problems (such as numerical divergence, 
excessive CPU time or memory). On the other hand, one small disadvantage in using 
acetone is that it is a rather volatile liquid. We thus have to carefully limit the 
evaporation, to avoid problems due to the latent heat of evaporation together with 
a small decrease of the thickness. 

The experimental cell used for the present experiments is schematically depicted 
on figure 6. The lateral walls and the conducting bottom are made out of stainless 
steel. The length L is 30 mm and the two front and back transparent glass sides are 
separated by 10mm. We hope that this short distance favours a flow without a 
horizontal velocity component normal to the glass plates, so that a two-dimensional 
model would be sufficient for comparisons. We have verified experimentally in a few 
cases that the flow in the middle of the cavity is just slightly slowed because of the 
effect of the lateral boundaries ; in the worst cases, the boundary-layer effect along 
the lateral wall is only observed over a distance of about 2 mm. The temperature 
gradient is imposed using two water-thermostated copper pieces in good thermal 
contact with the lateral stainless steel walls. The two temperatures are measured 
using thermocouples. A Teflon block is inserted a few millimetres above the upper 
surface, in order to avoid evaporation problems. Probably this Teflon block will 
influence the thermal boundary condition at the free surface but this is ignored in the 
numerical model as already explained. Therefore quantitative comparison between 
numerical simulations and experiences is not expected to be completely satisfactory. 

3.2. Monocellular convection 
We first perform experiments with low R a  and Ma (that is with thin layers and small 
AT), to obtain monocellular states. Figure 7 shows three horizontal velocity profiles, 
V,(z) on the vertical median of the cavity, a t  the following conditions: ( a )  h = 
1.75 mm, AT = 1.2 K (thus R a  = 2212 andMa = 7980); ( b )  h = 2.5 mm, AT = 0.8 K 
(thus R a  = 4300 and Ma = 7600); (c) h = 2.5 mm, AT = 1.2 K (thus R a  = 6450 and 
Ma = 11 400). Comparing the surface velocity of the first and third cases, where only 
the thickness of the acetone layer is modified, we verify that the ratio of velocities 
(-5.881 - 3.91 = 1.48) is equal to the ratio of the thicknesses (2.5/1.75 = 1.43). This 
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FIGURE 7 .  Horizontal velocity profiles V , ( z )  on the vertical median of the cavity: 
(a)h=1.75mm,AT=1.2K;(b)h=2.Fjmm,AT=0.8K;(c)h=2.5mm,AT=1.2K. 

is in agreement with the analytical two-dimensional model (Villers & Platten 1987) 
which predicts that  the velocities are proportional to h and AT when thermocapillary 
convection dominates (and this is the case for thin layers). For the second and third 
profiles, only AT is changed, and the ratio of the surface velocities (-5.88/ -3.61 = 
1.63) is also comparable to the ratio of the temper;tture differences (1.2/0.8 = 1.5). 
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We have performed a numerical simulation for the conditions of the second profile, 
that is h = 2.5 mm and AT = 0.8 K. The corresponding dimensionless numbers are 
Pr = 4.24, Ra = 4300, Ma = 7600 and A = 12. The streamlines and isotherms 
obtained for the steady state are presented in the figure 8(a ) .  We see that in the 
central part of the cavity, where experimental measurements are made, the 
streamlines are horizontal and parallel ; the convection is in the form of a monocellular 
cell, with the exception of a little vortex appearing near the hot wall. The horizontal 
velocity profile (deduced from the stream function and converted in a dimensional 
form) is shown on figure 8 (b) ,  and is in quantitative agreement with experiments : 
- 3.5 mm/s for the surface velocity compared to - 3.6 mm/s found experimentally, 
and 1.15 mm/s as the maximum bulk velocity, compared to the measured value of 
1.1 mm/s. 
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FIGURE 9. Horizontal velocity profile on the vertical median of the cavity: 
h = 2.5 mm, AT = 1.6 K. 

3.3. Multicellular convection 
We describe in this subsection an experiment performed in an acetone layer of 
thickness h = 2.5 mm, submitted to a temperature difference of AT = 1.6 K, that  is 
twice that for the profile shown on figure 7 ( b ) .  The new profile is presented on figure 
9. We immediately see that the surface velocity (-5.31 mm/s) is not twice the 
velocity obtained with AT = 0.8 K ( - 3.61 mm/s) and even is less than that obtained 
with the lower AT = 1.2 K (-5.88 mm/s, see figure 7c) .  Thus it seems that the 
experiment a t  AT = 1.6 K is not an extrapolation of those a t  AT = 0.8 K and 1.2 K. 
Therefore, we have measured other velocity components. Figures 10(a) and 10(b) 
give the vertical velocity component along an horizontal line (V,(z) at  z = 1.35 mm 
above the bottom of the cavity) and the horizontal velocity component along the 
surface V,(s). We clearly observe that V ,  oscillates in the central part of the cavity, 
as it should when the flow is multicellular ; indeed, besides the two boundary layers 
near the hot and cold walls, we also observe in the central part successive alternation 
of rising and sinking liquid, with relatively small vertical velocities (of the order of 
one-fifth of the velocities in the boundary layers). In addition, the horizontal velocity 
component along the surface V,(z) indicates that  the motion in the surface is still 
from the hot to  the cold side, but there are important variations of the velocity, 
between -4  and -7  mm/s. From these two profiles, we may conclude that the flow 
is multicellular and, particularly from figure lO(u), that there must be five vortices 
inside the basic convective cell. 

We have performed a second numerical simulation for the conditions of this last 
experiment, h = 2.5 mm and AT = 1.6 K. The corresponding dimensionless numbers 
are Pr = 4.24, Ra = 8600, Mu = 15200 and A = 12. The streamlines and isotherms 
obtained for the steady state are presented in figure 11.  We clearly see the 
multicellular pattern, with five vortices (although the fifth near the cold wall is less 
visible). Also, the isotherms show some inversions in the horizontal gradient aT/ax 
along the horizontal coordinate. Figure 12 (a-c)  gives the three computed dimensional 
profiles which correspond to the three experimental profiles shown on figures 9 and 
10(u, b ) .  The comparison between the experiment and the simulation is not only 
correct as far as the number of vortices is concerned, but also from a quantitative 
point of view : the surface velocity on the vertical median is - 6 mm/s numerically 
compared to  - 5.31 mm/s experimentally. Concerning the vertical velocity com- 
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FIGURE 11. Streamlines and isotherms of a numerical simulation of the flow field at Pr = 4.24, 
Ra = 8600, Ma = 15200 and A = 12; these conditions correspond to the experiment shown on 
figures 9 and 10. 
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FIGURE 12(a, b ) .  For caption see facing page. 

ponent along an horizontal line, the comparison is especially good near the end walls : 
we obtain 1.6 mm/s and - 1.3 mm/s in the simulation whereas experiments give 1.4 
and - 1.3 mm/s ; in the central part of the cavity, the order of magnitude is correct 
and the number of zeros and extrema is good. The same is also true of the surface 
velocity along the free surface. Both simulation and experiment show velocity 
variation between - 7 and - 3 mm/s. At this stage, we can already conclude that the 
numerical model we use gives a good qualitative and quantitative description of the 
experiments, in the investigated range of dimensionless numbers. 

4. Oscillatory convection : experiments 
We have already seen a transition between monocellular stationary states and 

multicellular stationary states, on increasing the control parameter AT. Increasing 
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FIQURE 12. (a) Horizontal velocity profile V , ( z )  on the vertical median of the cavity, ( b )  vertical 
velocity component V,(s) along an horizontal line at z = 1.35 mm, and (c) horizontal velocity 
component V&) along the surface. The three profiles are obtained from the numerical simulation 
of the flow field at Pr = 4.24, Ra = 8600, Ma = 15200 and A = 12; these conditions correspond to 
the experiment shown on figures 9 and 10. 

AT (or h) still further, we expect another transition towards spatio-temporal states. 
This is the object of this section. 

4.1. Detection of the oscillations 
Determination of periodic states is not easy, in the absence of some knowledge of the 
conditions for their appearance, i.e. the values of the control parameters, the region 
of the cavity where the amplitude of oscillations is sufficient to be detected, the order 
of magnitude of the time period (a few seconds, minutes, etc.). It appears from 
preliminary measurements of periodic behaviour that the period is of the order of 
I0 s, and that the most important variations of the horizontal component of velocity 
(the amplitude of the oscillations) are recorded a few tenths of a millimeter below the 
surface. Figure 13 shows a few detailed oscillations recorded by our signal analyser. 
The thickness h of the layer for this experiment was 4.0 mm and the temperature 
difference A T  = 3.4 K ;  the optical LDV probe was focused 0.4 mm below the surface, 
on the vertical median of the cavity. The figure is composed from 59 successive 
Fourier transforms of the LDV signal, taken at  regular time intervals (the time 
between each FFT is 0.744 s). Regarding the shape of an individual spectrum, each 
one is itself an average of Fourier transforms of 8 time samples of 0.1 s, with overlaps, 
taken over about 0.7 s.  As the arrival times and the sizes of the incoming particles 
in the optical probe are variable, the corresponding Fourier transforms have different 
amplitudes. We can observe different typical situations : for example, many particles 
of about the same size cross the measuring volume a t  approximately equally spaced 
times and then the average FFT is broad ; in other cases, if two particles cross at the 
beginning and at  the end of the time span, we finally observe two peaks in the 
average spectrum. Thus the global average Fourier transforms have maximum peaks 
corresponding to different values of the instantaneous velocities at the measuring 
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FIQURE 13. Example of some oscillations of an horizontal component of the velocity at  one 
point in the cavity, h = 4.1 mm, AT = 3.4 K. 

point over the entire time of the averaging procedure. However, we are interested in 
the global variation with time of the frequency corresponding to maximum 
amplitude. From the result shown on figure 13, we clearly observe that the signal 
oscillates between 20 KHz4300 Hz and 20 KHz-3600 Hz with a period of 11.0 s. 
Since the fringe spacing of the LDV system is 1.7 pm and the 20 KHz corresponds 
to the frequency shift used to resolve the sign ambiguity using double Bragg cells, 
then the horizontal velocity oscillates between -7.3 mm/s and -6.1 mm/s. Of 
course, the oscillations are recorded over several minutes (typically 10 to 15 min), in 
order to be sure they are not transient, and to obtain a precise value of the period. 

4.2. Velocity measurements in periodic conditions 

It should be pointed out that LDV is not well suited for the study of time-dependent 
velocity fields since we can perform only a local measurement of one velocity 
component a t  one time. Consequently, it is hard to determine phase relations 
between values of the velocity obtained at different positions. It would be possible 
to look a t  the whole velocity field, as a function of time, using other techniques such 
as particle image displacement velocimetry (Dudderar & Simpkins 1977). Figure 14 
shows the profile V,(z) along the vertical median with h = 3.3 mm and AT = 4.1 K. 
For each z, the graph gives the two extreme values of the velocity and the arrow 
indicates the amplitude of the velocity variation. The period has the same constant 
value everywhere and is equal to 9.3 s. We see that the amplitude of the oscillations 
is important in the upper part of the layer, near the surface where thermocapillarity 
is the principal cause of motion. On the other hand, in the region of positive 
horizontal velocities (near the bottom of the cavity), oscillations are not visible. 

I n  another experiment characterized by h = 5.70 mm and AT = 6.0 K, we have 
measured the profile V,(z) along an horizontal line a t  z = 2.5 mm above the bottom 
(see figure 15). Once again, the two dots indicate the minimum and maximum values 
of K ( t ) .  From this profile, we deduce that the spatio-temporal flow structure is not 
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FIGURE 14. VJz)  profile measured on the vertical median of the cavity (h  = 3.3 mm and AT = 
4.1 K), showing the minimum and maximum values of the measured velocities during the 
oscillations. 
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simply of the form of travelling waves. We would see in that case in the central part 
an oscillation of V,  between negative and positive values, corresponding to a 
continuous translation of convective rolls; this is not the case, except at  some 
particular positions. 

4.3. Steady and oscillatory cases as a function of h and AT 
We have repeated these experiments many times, changing the thickness h and the 
temperature difference AT. Depending on the experimental conditions, we have 
obtained stationary or oscillatory regimes. Table 1 lists the parameters for steady 
experiments (i.e. when oscillations are not detected) whereas table 2 lists the 
oscillatory experiments, giving for each the measured values of the period l7. 
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h(mm) AT(K) 

1.75 1.2 
2.50 1.2 
3.85 1.2 
5.70 1.2 
7.50 1.2 
9.20 1.3 

14.25 1.3 
2.50 1.6 
2.50 2.4 
2.00 2.7 
3.00 2.7 
4.00 2.7 
5.00 2.7 
6.00 2.7 
7.00 2.7 
7.50 2.9 
3.25 3.0 
3.75 3.0 
5.75 3.0 
3.20 3.4 
5.20 3.4 
5.85 3.4 
7.50 4.3 
7.00 4.5 
2.50 4.7 
5.80 4.9 
6.00 4.9 
6.25 4.9 
6.80 4.9 
7.50 5.6 
7.50 7.7 
2.50 9.0 

Ra 

2212 
6 450 

23 557 
76448 

174150 
348 229 

1 294 036 
7 600 

12900 
7 430 

25078 
59 443 

116 100 
200 62 1 
318578 
420 863 
35 427 
54422 

196 193 
38 325 

164 455 
234 156 
624038 
530 964 
25262 

328881 
364090 
41 1523 
530007 
812700 

1117463 
48 375 

Ma 

7 980 
11 400 
17556 
25 992 
34 200 
45 448 
70 395 
15200 
22 800 
20 520 
30 780 
41 040 
51 300 
61 560 
71 820 
82 650 
37 050 
42 750 
65 550 
41 344 
67 184 
75 582 

122 550 
119700 
44 650 

107 996 
111720 
116375 
126616 
159 600 
219450 
85 500 

TABLE 1. Steady experiments : thickness, temperature difference, Ra and Ma 

From these two sets of results, we can try to determine the conditions for the 
occurrence of time-dependent convection. We see that for some AT (i.e. below 3 K), 
we never observe oscillatory convection, for any thickness. For other AT (i.e. 3.4 K), 
convection is stationary for small h (in this example 3.2 mm and below). When h 
increases (more than 3.4 mm for AT = 3.4 K), oscillations appear, and the period 
increases with h. However, in thicker layers, we reach new steady states (i.e. for h = 
5.2 and 5.85 mm). At constant AT, increasing h, the path we experimentally follow 
in the (Ra,Ma)-plane is sketched by the full line in figure 16 and in order to interpret 
the experimental findings, it seems that there exists a critical curve below which the 
flow is steady, and oscillatory above. All the experimental cases are reported on 
figure 17 which shows the two sets of measurements of tables 1 and 2 in the (Ma, Ra)- 
plane. This graph also suggests the existence of a critical curve (not just a straight 
line) separating stationary and oscillatory cases. This curve (along which the aspect 
ratio A is however variable) indicates that, extrapolating to microgravity conditions 
(Ra = 0 ) ,  there would be a critical Marangoni number Mucrit w 25000. Also, we 
observe that gravitational convection plays a stabilizing role. Such a graph is strictly 
limited to Pr w 4. 
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h(mm) AT(K) R a  Ma 

4.25 3.0 99222 ' 48 450 
4.60 
4.85 
3.40 
3.55 
3.75 
3.95 
4.10 
4.20 
2.75 
3.15 
3.55 
3.75 
3.30 
1.35 
1.70 
1.90 
2.15 
2.25 
2.45 
3.00 
3.15 
5.60 
5.50 
5.60 
5.90 
5.60 
6.00 

3.0 
3.0 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.9 
3.9 
3.9 
3.9 
4.1 
4.9 
4.9 
4.9 
4.9 
4.9 
4.9 
4.9 
4.9 
4.9 
6.0 
6.0 
6.0 
9.0 
9.0 

100451 
117735 
45 970 
52 327 
61 678 
72 082 
80610 
86 653 
27 901 
41 933 
60022 
70 748 
50 686 
4 147 
8281 

11 562 
16752 
19200 
24 789 
45511 
52 685 

296018 
343 398 
362 47 1 
423 902 
543 707 
668 736 

52 440 
55 290 
43 928 
45 866 
48 450 
51 034 
52 972 
54 264 
40 755 
46 683 
52611 
55575 
51 414 
25 137 
31 654 
35378 
40033 
41 895 
45619 
55 860 
58653 

104272 
125400 
127 680 
134 520 
191 520 
205 200 

(6) 

10.5 
11.5 
13.0 
9.8 

10.0 
9.4 

11.0 
11.2 
11.4 
8.0 
8.5 
9.2 
9.4 
9.3 
4.7 
5.1 
5.5 
7 .O 
6.6 
5.6 
7.0 
8.0 

13.7 
12.0 
12.5 
13.0 
13.6 
13.9 

TABLE 2. Oscillatory experiments : thickness, temperature difference, Ra,  Ma and measured 
values of the period l7 

We are also interested in the dependence of the period 17 on h and AT, or on Ra 
and Ma. Experimentally, l7 does not seem to depend on AT, but varies considerably 
with the thickness h. For example, at h = 1.35 mm and AT = 4.9 K, the measured 
period is 4.7 s whereas with h = 5.6 mm (and the same AT) 17 = 13.7 s, it is about 
three times greater. At constant h (e.g. h = 5.6 mm), 17 = 13.6 and 13.7 s for 
respectively AT = 9 and 4.9 K. In view of these findings, we have plotted the 
dimensionless period (with the timescaling h2/v)  as a function of the ratio Ma/Ra 
which is independent of the temperature difference AT. Figure 18 suggests a simple 
monotonic relation between 17/(h2/v) and Ma/Ra (e.g. linear). The choice of the 
timescaling can be criticized, but it appears that the viscous time h2/v corresponds 
in order of magnitude to the measured period (say 1 s). The thermal time hZ/K could 
also be used since Pr is not too far from 1. A scaling time incorporating surface 
properties has been tried; indeed, -pvh/(AT&/aT) has the dimension of time, but 
a typical order of magnitude of this timescale is 2.5ms, very different from the 
measured periods. It will now be interesting to see if these experimentally recorded 
oscillations can be reproduced by numerical simulations, and that is the goal of the 
last two sections. 
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0 Ra 

FIGURE 16. Sketch of the instability curve in the (&,Ma)-plane, showing the path followed by 
experiments performed at constant AT. 
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FIGURE 17. Stationary (*) and oscillatory (0) experimental situations observed in the 
(Ra, Ma)-plane. 
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Ra Ma Ma/Ra I7 (dimensionless) 

10000 10000 1 Stationary state 
15000 15000 1 0.34 
20 OOO 20 000 1 0.33 
30 OOO 30 000 1 0.34 
40 000 30 OOO 0.75 0.24 

TABLE 3. Parameters of the numerical simulations performed in order to observe 
oscillatory convection 

5. Oscillatory convection : numerical simulation 
Most of the numerical simulations presented in the literature, concerning this kind 

of problem, are performed with low Pr, because, essentially, of the interest in crystal 
growth of semiconductors or in melt motion of metals. Moreover, just a few papers 
(Ben Hadid & Roux 1990; Villers & Platten 1990) consider the influence of 
thermocapillarity. At Pr greater than 1, the numerical procedure implies large 
computational times. Therefore we have not tried to obtain extensive results for the 
transition between stationary and oscillatory convection, as this has been done by 
Ben Hadid & Roux (1990) for Pr = 0.015. However, we present in this section the 
results of a few simulations of convection in a cavity of aspect ratio A = 9, with 
Pr = 4.24 and for some pairs of Ra and Ma (see table 3). 

We observe oscillatory convection with Ra and Ma equal to or greater than 15000. 
This crude estimation of the critical limit has the same order of magnitude as the 
experimental onset presented on figure 17 (Ra = 15000, Mucrit = 30000). Of course 
comparison is not as significant as for the steady state. We have not tried to refine 
the numerical solution owing to the prohibitive CPU time on the microcomputer and 
the boundary conditions used in the model. The non-dimensional numerical period 
seems to be a function of the ratio Ma/Ra only, as has been suggested by the 
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t = O  

c 

1917142 

i 
23IT7/42 

3817142 

4017142 

FIGURE 19. Streamlines at different times during one period of oscillation, obtained by numeri- 
cal simulation with Ra = 20000. Ma = 20000, Pr = 4 and A = 4. 

experiments. For the two numerically investigated ratios, the dimensionless periods 
agree with the experimental data of figure 18. 

From the numerical simulations, it is interesting to describe the temporal 
behaviour of the flow pattern. Figure 19 illustrates the variation of the streamlines 
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at different times during one period of oscillation (with Ra = M a  = 20000). We 
observe a first stage (between t = 0 and 12 l7/42) characterized by an ‘emission’ of 
a vortex travelling from the hot wall towards the cold wall, whereas the first well- 
formed vortex remains almost at  a fixed position. Afterwards, the flow seems 
stabilized (at t = 23Z7/42) with three vortices of gradually decreased intensity, still 
moving from hot to cold. This very regular pattern of convection is then rapidly 
destroyed : there is a slowing down in the largest (cold) part of the cavity, benefitting 
the hot vortex which reaches its maximum amplitude (at t = 4017/42). Figure 20 
shows the evolution over time of some characteristic quantities : the maximum of the 
stream function Ym,,, the Nusselt number, and the horizontal velocity component 
at  the middle of the surface during one period. Their non-sinusoidal character 
demonstrates the nonlinear nature of the evolution of the perturbative pattern. 

6. Discussion and conclusions 
The results presented in §$2-5 show, for the experimental and numerical 

approaches, the same scenario (successive transitions between three flow patterns) 
when Ra and Ma increase : a monocellular steady state, a multicellular steady state 
and a time-dependent flow. Moreover, quantitative agreement is achieved regarding 
stationary states. For the oscillatory cases, it is impracticable (due to CPU time and 
memory requirements in our equipment) to perform numerical simulations for the 
conditions of an experiment. However, experiments and simulations give almost the 
same periods and have a common feature: we never observe travelling waves with 
the appearance of rolls near one wall and the corresponding disappearance near the 
opposite wall. 

The travelling wave state was expected because it is predicted by the theory of 
Smith & Davis (1983) in an infinite cavity and by Laure & Roux (1989) in a cavity 
of large extent. Both contributions show rolls travelling from the cold side to the hot 
side (with return flow conditions and Pr > 1). For example, Smith & Davis predict an 
instability of the parallel flow at a critical value Ma*Crit = 220 for Pr = 4 (i.e. for 
Ma = 550 in our definition, since A = 2.5), with a mode of instability characterized 
by a dimensionless wavelength 2.5 and a dimensionless frequency 1.23. We have 
performed a supplementary numerical simulation using periodic lateral boundary 
conditions with a periodic length fixed at  2.5, in order to simulate an infinite cavity. 
At  Ma = 1000 ( >550),  Ra = 0 and Pr = 4, we have observed travelling rolls, as we 
can see on figure 21 with the streamlines given at  an arbitrary time. The numerical 
frequency of these travelling waves ia about 0.61. Despite the divergence from 1.23 
(the value predicted by Smith & Davis) we consider that our ‘nonlinear’ simulation 
confirms their linear stability results. 

There thus remains a discrepancy between the instability in an infinite or large 
cavity and the time-dependent flow we observe in a cavity of low aspect ratio (say 
with A between 5 and 10). We suppose that lateral walls prevent or delay the 
translation of rolls, because it could be difficult when A is small to create or suppress 
rolls near these lateral walls. For large or infinite layers, it seems that when the 
parallel flow becomes unstable, we directly observe a time-dependent periodic 
structure. In a finite (and small) cavity, we observe a first instability to a steady 
multicellular pattern, followed by a second instability towards a very complex time- 
dependent flow. 

At  this stage, we need fundamental theoretical work taking into account the role 
of the lateral walls, incorporating the aspect ratio A in a linear or nonlinear theory, 
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(a) 

0 0.1 0.2 0.3 
Dimensionless time 

(b) 

0.4 

20 
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Dimensionless time 

FIQURE 20.(a,b) .  For caption see facing page. 

together with the usual parameters like Pr, Ra and Ma. Also, it has already been 
shown that three-dimensional effects can be very important, especially in low-Pr 
fluids (Smith & Davis 1983). Nevertheless, even though our results are restricted to 
one Pr and their general validity cannot be asserted, we believe that our experimental 
work constitutes a preliminary study to eventually validate these expected new 
theories. 

This work is partially supported by the FNRS (Fonds National de la Recherche 
Scientifique) Brussels by grant No. 1.50101.89F. 
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FIQURE 21. Numerical simulation of an infinite cavity : streamlines corresponding to the 
instability of the parallel flow. 
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